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We study the behavior of persistent random walks (RW) on the integers in a
random environment. A complete characterization of the almost sure limit
behavior of these processes, including the law of large numbers, is obtained.
This is done in a general situation where the environmental sequence of random
variables is stationary and ergodic. Sza� sz and To� th obtained a central limit
theorem when the ratio +�*, of right- and left-transpassing probabilities satisfies
+�*�a<1 a.s. (for a given constant a). We consider the case where +�* has
wider fluctuations; we shall observe that an unusual situation arises: the RW
may converge a.s. to infinity even with zero drift. Then, we obtain nonclassical
limiting distributions for the RW. Proofs are based on the introduction of
suitable branching processes in order to count the steps performed by the RW.

KEY WORDS: Persistent random walks; random environment; branching
processes.

1. INTRODUCTION

Let [(*j , +j); j # Z] be a sequence of stationary ergodic random variables
taking their values in ]0, 1[2. Given a realization E of this sequence, let
[Xn]n # N be a homogeneous Markov chain of order 2, with state space Z
and transition probabilities:

P(Xn+1= j+1 | Xn&1= j&1, Xn= j, E)=* j

P(Xn+1= j&1 | Xn&1= j&1, Xn= j, E)=1&* j
(1.1)

P(Xn+1= j&1 | Xn&1= j+1, Xn= j, E)=+ j

P(Xn+1= j+1 | Xn&1= j+1, Xn= j, E)=1&+ j
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When E is random, the [Xn]-process is not Markovian and has two levels
of ``stochasticity'': the first one is called environment and is generated by the
realizations of the sequence [(*j , +j)]; the second one corresponds to the
trajectories of a ``persistent random walk'' on Z whose behavior is given by
(1.1). Thus, [Xn] will be referred to as Persistent Random Walk in Station-
ary Environment (PRWSE).

The properties of the analogous process where +j=1&*j (called Ran-
dom Walk in Random Environment) differ considerably from the properties
of usual random walks and have been studied by many authors.(14, 9, 13, 11)

The present model has been introduced by Sza� sz and To� th in ref. 12,
where they gave some applications to physical models such as ``the random
collision model;'' ``the stochastic Lorentz Gas.'' *j and +j were interpreted
as the left- and right-transpassing probabilities characterizing a random
scatterer placed on the site j ( j # Z). The term ``Persistent'' was used to
underline the persistence of the motion velocity (as a Markov chain) of the
particle but not of the position, Xn . These authors studied the asymptotic
behavior of [Xn] in two cases:

�� (S) +j=*j a.s., called the symmetric case, and

�� (PD) (+j �*j)�a<1 (a is a given constant), called the positive drift
case.

In the situation where the sequence [(*j , +j)] is i.i.d., they showed that
[Xn], when normed in the standard way, by - n, converges in distribution
to a gaussian law. However their study left some interesting questions
unresolved such as: In which cases Xn converges to +�, &�? Is the law
of large numbers satisfied? Except the situation (S) and (PD), is there a
limit law for Xn? If yes, does the limit law remain gaussian?

The aim of this paper is to answer the above questions. Firstly, we
provide criteria for identifying the a.s. limits of Xn (Theorem 2.1 below)
and those of Xn �n (Theorem 2.2 below), in a general situation of the
environmental sequence ([(*j , +j)] is only stationary and ergodic). These
results can be viewed as extensions of those of ref. 14 from random walks
in random environments to persistent ones. Secondly, in those cases where
Xn � +�, we give a nonclassical distribution limit theorem (Theorem 2.3
and 6.1), which complements the central limit theorem of ref. 12.

This paper is organised as follows. A mathematical construction of the
model and precise statements of our main results are given in the next sec-
tion. In Section 3 we give a complete characterization of the limit bahavior
of [Xn] in terms of the environment. Section 4 is devoted to the study of
an auxiliary Markov chain that describes ``the environment as seen from
the position of the random walk.'' The object of this is to derive some
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ergodic properties for [Xn], in order to prove the law of large numbers.
Some of the obtained results may be of independent interest: we give a con-
struction of invariant measures (for the auxiliary Markov chain) that
dominate the initial probability measure (which is not invariant). In Sec-
tion 5, we will prove the law of large numbers. We find that one may have
Xn � +� a.s. but (Xn �n) � 0 a.s. as well. This unusual situation, which
does not appear in Sza� sz and To� th's paper, is investigated in Section 6 in
which we prove that, when suitably normed, the PRWSE converges to a
non-gaussian limit distribution. This result holds when the environment
is i.i.d. and Xn � +�. It generalises the results of Kesten, Kozlov, and
Spitzer(9) from random walks in random environment to persistent ones,
thus extending Sza� sz and To� th's(12) discussion by asserting that the limiting
distribution of a PRWSE may be non-gaussian.

Our main tool is based on the introduction of suitable branching pro-
cesses which count the steps performed by the random walk.

2. NOTATION AND MAIN RESULTS

We begin with a mathematical construction of the model. Let
(E, F, %, ?) be an ergodic dynamical system, where % is an invertible trans-
formation of E and ? a %-invariant probability measure. This space is called
the space of environments. Let * and + be two measurable functions on E
with values in ]0, 1[.

�� For a fixed environment E # E, let %kE denote the k th translate of
E and *k(E)=*(%kE), +k(E)=+(%kE). Then, we consider on the space 0=
[&1, 1]_Z a Markov chain [(Yn , Xn)], which will have the following
interpretation. Yn is the n th jump of the random walker, Xn its position
after this jump. The transition operator of this Markov chain is given by

QE�(1, j)=* j�(1, j+1)+(1&* j) �(&1, j&1)

QE�(&1, j)=(1&+j) �(1, j+1)++ j�(&1, j&1)

for � a bounded measurable function on 0.
Let us denote by PE, i

j the law of this Markov Chain on (0N, T), given
(Y0 , X0)=(i, j), where T is the _-algebra generated by the cylinder sets,
i # [&1, +1] and j # Z.

�� Now, when E is chosen at random according to the probability ?,
our process, [(Yn , Xn)], evolves on the space (E_0N, F�T), equipped
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with the family of probabilities [P?, i
j ] i=&1, +1; j # Z , where P?, i

j is defined by
the formula

P?, i
j (A_B)=|

A
PE, i

j (B) d?(E); A # F, B # T (2.1)

Throughout this paper we assume that X0=0; we are interested by the
study of [Xn] under the probability P?, i

0 ; i=&1, +1.
Further notation that will be used is as follows

O . o? will denote the average with respect to ?

EE, i
j , E ?, i

j will denote respectively the expectation with respect to PE, i
j ,

P?, i
j

Tn=inf[k�0 : Xk=n]; n # Z the times the random walk hits each
integer.

In the sequel we assume that

O log *0o?>&� and O log +0o?>&� (2.2)

which in particular insures that O |log(+0 �*0)| o?<+�.

Theorem 2.1. (Proved in Section 3).

(i) If O log(+0 �*0)o?<0, then for ?-almost all E, i=&1, +1,

lim
n � +�

Xn=+� PE, i
0 -a.s.

(ii) If O log(+0 �*0)o?>0, then for ?-almost all E, i=&1, +1,

lim
n � +�

Xn=&� PE, i
0 -a.s.

(iii) If O log(+0 �*0)o?=0, then for ?-almost all E, i=&1, +1,

lim inf
n � +�

Xn=&�<lim sup
n � +�

Xn=+� PE, i
0 -a.s.

The theorem describes the a.s. recurrence-transience properties of the
PRWSE. Analogous criteria for random walks in random environments
(when +j=1&*j) have been established in ref. 14.

The key to prove the theorem is based on a relation between persistent
random walks and branching processes.
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Let Uj=*[k : 0�k<T1 , Xk= j, Xk+1= j&1]; j�0. We will show
that, when an environment E is fixed, under probability PE, i

0 , [U j , j�0]
is a inhomogeneous branching process (see refs. 3, 1, and 2 for the defini-
tions). This kind of relation first has been found by Harris.(7) By giving an
estimate to PE, i

0 (T1<+�), it turns out that lim supn � +� Xn=&� a.s.
if and only if the branching process almost surely extincts; otherwise,
lim supn � +� Xn=+� a.s.

The next theorem provides a law of large numbers for the PRWSE; it
also gives a corresponding result for the hitting times Tn .

Further notation that will be used throughout the paper is as follows.

mj=
+j

*j
; rj=

1&*j

* j
; s j=

1&+ j

+j

S=S(E)= :
+�

k=0

m0 .m1 } } } mk&1 .rk

F=F(E)= :
+�

k=0

s&k .m&1
&k+1 } } } m&1

&1 .m&1
0

where empty products equal 1.

Theorem 2.2. (Proved in Section 5).

(i) If OSo?<+�, then

lim
n � +�

Xn

n
=v and lim

n � +�

Tn

n
=v&1 w.p.1 [P?, i

0 ; i=&1, +1]

where v=(1+2OSo?)&1.

(ii) If OFo?<+�, then

lim
n � +�

Xn

n
=&v$ and lim

n � +�

T&n

n
=v$&1 w.p.1 [P?, i

0 ; i=&1, +1]

where v$=(1+2OFo?)&1.

(iii) If OSo?=+� and OFo?=+�, then we have

lim
n � +�

Xn

n
=0 w.p.1 [P?, i

0 ; i=&1, +1]
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and

lim
n � +�

Tn

n
= lim

n � +�

T&n

n
=+� w.p.1 [P?, i

0 ; i=&1, +1]

Remarks. (1) As we will see (Remarks 1 and 2 in Section 5), the
conditions concerning the random environment in (i), (ii), (iii) of Theo-
rem 2.2, are mutually exclusive and cover all possible cases. In (iii), each
(but only one) of the following cases is possible:

�� limn � +� Xn=+� a.s.

�� limn � +� Xn=&� a.s.

�� &�=lim infn � +� Xn<lim supn � +� Xn=+� a.s.

(2) The conditions in (i)�(ii) of Theorem 2.2 mean that the ratio
+0 �*0 , of right- and left-transpassing probabilities, has ``small'' fluctuations
around the value 1. When the environmental sequence [(*j , +j)] is i.i.d.
(i.e., when the space of environments is a product space with shift % and
(+, *) depends only on one coordinate), (i), (ii), (iii) of Theorem 2.2
respectively correspond to

Om0o?<1, Om&1
0 o?<1, Om0o&1

? �1� Om&1
0 o?

while v&1=1+2( Or0o? �1& Om0 o? ) and v$&1=1+2( Os0o?�
1& Om&1

0 o? ).
By Remark 2 above, one can see that the theorem extends

Solomon's(14) law of large numbers from random walks in i.i.d. environ-
ments to persistent ones (in a more general context of environments).
However, note that in i.i.d. environments, one can get the result very
quickly because one can represent Tn , the time the process hits integer n,
as a sum of mixing r.v.'s.

In our context, the theorem is proved by showing that in some
suitable probability space the jumps of the PRWSE are stationary and
ergodic. This will be done by coupling the jumps with the so-called
``environment seen from the position of the random walk'' (see Section 4).

While comparing the results of Theorem 2.1 to those of Theorem 2.2,
we find an unusual phenomenon: we may have Xn � +� a.s. but
(Xn �n) � 0 a.s. as well. When the environmental sequence is i.i.d., according
to Remark 2, the above situation occurs when

O log
+0

*0

o?<0 but O
+0

*0

o?�1
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Then it becomes interesting to study the existence of norming constants an

such that Xn �an converges to a non-degenerate limit distribution. If we sim-
plify the model by putting +j=1&*j a.s., the limiting distribution problem
has been completely resolved by Kesten et al.(9) (the model then is called
Random Walk In Random Environment). These authors showed in this
case that Xn �n} converges in distribution to a non-gaussian limit, for a
suitable real } (0<}<1).

Herein, we will show that Kesten, Kozlov and Spitzer's techniques can
be used succesfully to find limiting distributions for PRWSE. The main
condition that we require on the environments is of ``fluctuation type;''
namely, log(+0 �*0) will be supposed to have a non-arithmetic distribution.

We give below our precise result only in the case where Xn � +� a.s.
but (Xn �n) � 0 a.s. The general result (Theorem 6.1), which also gives the
limit distribution for Tn and Xn even when Xn �n has a positive limit, will
be found in Section 6.

Theorem 2.3. (Part of Theorem 6.1, proved in Section 6).
Assume that [(*j , +j); j # Z] are i.i.d. random variables satisfying (2.2) and
such that

O log
+0

*0

o?<0, O
+0

*0

o? >1, O
1

*0

o?<+�

the distribution of log(+0 �*0) is non-arithmetic.
Then there exists C>0 such that the following limit laws hold under

probability P?, 1
0 :

Tn

n1�} � L}, C and
Xn

n} � L� }, C

where

} is the unique positive real satisfying O (+0 �*0)}o?=1 (note that
}<1),

L}, C is a stable distribution concentrated on [0, +�[ with index }
and characteristic function

.}, C(t)=exp {&C |t|} \1&i
t

|t|
tg \?

2
}++= , t # R*

L� }, C is the distribution defined by L� }, C(]&�, u])=L}, C(]u&1�}, +�[)
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Remark. The constant C, which gives a description of the limiting
distribution is complicated and is given by formula (6.10) in Section 6.

3. A RELATION BETWEEN BRANCHING PROCESSES AND
PRWSE. PROOF OF THEOREM 2.1

We begin by giving estimates for PE, i
0 (Tn<+�), where E is a fixed

environment. We do this by using a relation between branching processes
and PRWSE.

Proposition 3.1. (i) If O log(+�*)o?�0, then for ?-almost all
E, i=&1, +1 and all n # N,

PE, i
0 (Tn<+�)=1

(ii) If O log(+�*)o?>0, then for ?-almost all E and i=&1, +1,

lim sup
n � +�

1
n

log PE, i
0 (Tn<+�)�&:<0 (where : is a suitable constant)

The proof of the proposition is delayed until the end of the section.

Corollary 3.2. (i)$ O log(+�*)o?�0 O lim supn � +� Xn=+�
PE, i

0 -a.s. for ?-almost all E; i=&1, +1.

(ii)$ O log(+�*)o?>0 O limn � +� Xn=&� PE, i
0 -a.s. for ?-almost

all E; i=&1, +1.

Proof. (i)$ is immediate from (i) of Proposition 3.1. To show (ii)$,
we have for small =>0 and sufficiently large n�0, PE, i

0 (Tn<+�)�
e&(:&=) n so that according to Borel�Cantelli's lemma PE, i

0 (lim supn � +� Xn

=+�)=0. We show that lim supn � +� Xn=&� PE, i
0 -a.s.

When an environment E is fixed [(Yn , Xn)] is a Markov chain, which
is irreductible since a.s. 0<*<1 and 0<+<1. Then for any k # Z we have

PE, i
0 (lim sup

n � +�
Xn�k)=PE, i

1 (lim sup
n � +�

Xn�k)

=PE, i
1 (lim sup

n � +�
(Xn&1)�k&1)

=P%E, i
0 (lim sup

n � +�
Xn�k&1)

�P%E, i
0 (lim sup

n � +�
Xn�k)
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By using the invariance of %, it follows that the last inequality is an
equality. This proves that PE, i

0 (lim supn � +� Xn�k) is ?-a.s. constant and
does not depend on k. Now, since lim supn � +� Xn<+� a.s., it follows
that lim supn � +� Xn=&� a.s. K

Proof of Theorem 2.1. It is a direct consequence of Corollary 3.2.
(ii) is immediate from (ii)$ of Corollary 3.2.

(i) follows from (ii) by exchanging the roles of the positive and
negative integers.

Let us prove (iii). If O log(+0 �*0)o?=0, by (i)$-Corollary 3.2,
lim supn � +� Xn=+� w.p.1.

By (2.2) we also have O log(*0 �+0)o?=0. For symmetry reasons, we
have lim supn � +�(&Xn)=+� w.p.1; thus lim infn � +�(Xn)=&�
w.p.1. K

Proof of Proposition 3.1. To prove the proposition, we will use a
relation between PRWSE and Branching processes. Let us fix an environ-
ment E. The process [(Yn , Xn)] then is Markovian. By using the Markov
property, we can write

PE, i
0 (Tn<+�)=PE, i

0 (Tn&Tn&1<+�, Tn&1<+�))

=PE, i
0 (Tn&Tn&1<+� | Tn&1<+�) PE, i

0 (Tn&1<+�)

=P% n&1E, 1
0 (T1<+�) PE, i

0 (Tn&1<+�)

and by induction,

PE, i
0 (Tn<+�)=PE, i

0 (T1<+�) 6 n&1
k=1P% kE, 1

0 (T1<+�) (3.1)

Then it is sufficient to study PE, i
0 (T1<+�); i=&1, +1.

For j<0 define

Uj=*[k : 0�k<T1 , Xk= j, Xk+1= j&1]

We have

T1=1+2 :
0

j=&�

Uj (3.2)

We will see below that the Uj 's are finite. Then, since they take nonnegative
integer values, we have

PE, i
0 (T1<+�)=PE, i

0 (Uj � 0 when j � &�) (3.3)
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The following lemma which also will be useful in the next section describes
a certain aspect of the distribution of the process (Uj ; j�0).

Put

Z0=1, Zn=U&n+1 ; n�1

Lemma 3.3. (E is fixed). (i) Under probability PE, i
0 , i=&1,

+1, the process [Zn]n�0 is a branching process with time-varying law of
particle reproduction given by the generating function

f0(s)={
1&+0+

+0*0 s
1&(1&*0) s

*0

1&(1&*0) s

if i=&1

if i=+1,

for the particle of generation 0

fn(s)=1&+&n+
+&n*&ns

1&(1&*&n) s
, for the particles of generation n�1

(ii) O log(+0 �*0)o?�0 O PE, i
0 (Zn � 0)=1 ?-a.s., O log(+0 �*0)o?>0

O PE, i
0 (Zn � 0)<1 ?-a.s.

Proof of Lemma 3.3. To prove (i), let E be a fixed environment.
Conditionally on this, [(Yn , Xn)] is a Markov Chain. We have

PE, +1
0 (U0=k)=*0(1&*0)k; k�0

(3.4)
PE, &1

0 (U0=k)={1&+0

+0*0(1&*0)k&1

if k=0
if k�1

To describe the distribution of Uj for j<0, observe that a step by [Xn]
from j to j&1 has to occur between two successive steps from j+1 to j.
When Xn0

= j, for some n0 , then the conditional probability given E and
(Y0 , X0)=(i, 0), (Y1 , X1),..., (Yn0

, Xn0
), of moving k times from j to j&1

before the next move from j to j+1 is

1&+j if k=0 and + j*j (1&*j)
k&1 if k�1

From this, by using the Markov Property, the distribution of Uj given
Uj+1 ,..., U0 is that of the sum of U j+1 independent random variables
A1 , A2 ,..., each with the distribution

PE, i
0 (A1=k)={1&+j

+ j*j (1&*j)
k&1

if k=0
if k�1

(3.5)
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Thus, under probability PE, i
0 , the process [Zn]n�0 is an inhomogeneous

branching process with offspring distribution given by (3.4) for the particle
in the first generation and (3.5) for the particles in the n=&j+1th genera-
tion (see ref. 3 for the definitions concerning branching processes).

To prove (ii), using the notation fn= f (E)
n , note that when i=&1 we

have f (E)
n = f (%nE)

0 ; this is not true when i=+1. For this, the two cases will
be treated separately.

Let us denote by qi (E)=PE, i
0 (Zn � 0) the extinction probability of the

branching process [Zn] given the environment E.
If we let E to be random, when i=&1, [Zn] is an ordinary branching

process in a random environment; thus, according to Athreya and
Karlin, (1) q&1(E)=limn � +� f0 b f1 b } } } b fn(0). Furthermore, using (2.2),
we apply Corollary 1 and Theorem 3 in ref. 1 to assert that q&1(E)=1
?-a.s. if O log f $0(0)o?= O log(+0 �*0)o?�0 and q&1(E)<1 ?-a.s.
otherwise.

In the situation where i=1, one can remark that

q1(E)= f0( lim
n � +�

f1 b f2 b } } } b fn(0))= f0(q&1(%E))

and we get the result from the case i=&1 since f0 is a generating
function. K

Now we prove (i) of the proposition. If O log(+0 �*0 )o?�0, by (3.3)
and (ii) of Lemma 3.3,

PE, i
0 (T1<+�)=1 ?-a.s.

Thus, PE, i
0 (Tn<+�)=1 ?-a.s. by (3.1).

To prove (ii) of the proposition, from (3.1) we have

lim sup
n � +�

1
n

log PE, i
0 (Tn<+�)�lim sup

n � +�

1
n

:
n&1

k=1

log q1(%kE)

By (ii) of Lemma 3.3, O log(+0 �*0)o?>0 implies &�� O log q1(E)o?

<0. Then (ii) of the proposition follows from the ergodic theorem. K

4. THE ENVIRONMENT AS SEEN FROM THE POSITION
OF THE WALKER

We note that the law of large numbers for the PRWSE [Xn] cannot
be achieved by applying the ergodic theorem because the jumps are not
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stationary. The object of this section is to show that in some suitable prob-
ability space these jumps are stationary and ergodic.

An economical way to do this, is to study the following Markov
Chain, which is closely related to the PRWSE:

Vn=(%Xn . , Yn); n�0

It has state space E_[&1, +1] and is obtained by coupling the jump
Yn=Xn&Xn&1 of the PRWSE, with the ``environment seen by the walker
after this jump.''

Under the probability P?, i
0 ; i=&1, +1, the initial distribution of

[Vn] is ?�$i and the transition operator is given by

K.(E, 1)=.(%E, 1) *(E)+.(%&1E, &1)(1&*(E))

K.(E, &1)=.(%E, 1)(1&+(E))+.(%&1E, &1) +(E)

for . a bounded measurable function on E_[&1, +1].
For & a probability measure on E_[&1, +1] (that is an initial dis-

tribution of [Vn]) we define on E_0N the probability P&
0 by

P&
0=|

E_[&1, +1]
PE, i

0 d&(E, i) (4.1)

Then, if & is K-invariant, the Markov chain [Vn] is stationary under
probability P&

0 . Note that ?�$i is not K-invariant. Theorem 4.1 below
shows that [Vn] has an invariant probability measure &, which dominates
?�$i .

We recall some notation that will be used

mj=
+j

*j
; rj=

1&*j

* j
; s j=

1&+ j

+j

S=S(E)= :
+�

k=0

m0 .m1 } } } mk&1 .rk

F=F(E)= :
+�

k=0

s&k .m&1
&k+1 } } } m&1

&1 .m&1
0

Theorem 4.1. If OSo?<+� (respectively OFo?<+�), then
there exists a [Vn]-invariant probability measure &, which dominates
?�$i ; i=&1, 1; & is given by

&=v(1+S(E)) ?�$1+vS(%E) ?�$&1 (4.2)
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(respectively &$=v$(1+F(E)) ?�$&1+v$F(%&1E) ?�$1) where v (resp. v$)
is a normalization constant.

Furthermore, under the probability P&
0 , [Vn] is stationary and

ergodic.

An analogous formula to (4.2) is given in the case of finitely dependent
environment in ref. 12 (see the remark after Theorem 2). In our context, for
seek of completeness we will write the proofs.

Remark. Before proving the theorem, we note that OSo?<+�
implies Xn � +� a.s. [P?, i

0 , i=&1, +1].
To see this, note that OSo?=�+�

k=0 Om&k } } } m&1 r0o?=
O�+�

k=0 m&k } } } m&1r0o? . It follows that OSo?<+� implies
�0

k=&� m&k } } } m&1<+� a.s. Now,

log m&k } } } m&1

= :
&1

j=&k

log m j � &� a.s. implies O log m&1o?<0 (4.3)

by Lemma 3.6 of ref. 6. Then Theorem 2.1 concludes that a.s. Xn � +�.

Proof. We only prove the result when OSo?<+�; the corre-
sponding result when OFo?<+� being similar. By the above remark,
with P?, 1

0 -probability 1, limn � +� Xn=+� so that for any n�1, we have
Tn<+�. Then if we read the [Vn]-process at the random times Tn , we
obtain [VTn

=(%n . , 1)], which is a ``degenerate'' Markov chain with
invariant probability measure ?�$1 . Then we set

&(B)=E ?, 1
0 \ :

T1&1

k=0

1B(Vk)+ ;

for B a measurable subset of E_[&1, +1] (4.4)

&(B) is the expected number of visits to B performed by [Vn] before time T1 .
It is not difficult to see that & is a well-defined measure. Our first aim

below is to show that & is invariant for [Vn]. Next, we will find an explicit
formula, which shows that ?�$i ; i=&1, 1 is absolutely continuous w.r.t. &.

(a) Invariance of &: Let . be a measurable non-negative function on
E_[&1, +1]. In the sequel &(.) will denote its mean relative to the
measure &: &(.)=�+�

k=0 E ?, 1
0 (.(Vk), T1>k). Then we have
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&(K.)= :
+�

k=0

E ?, 1
0 (E ?, 1

0 (.(Vk+1) | Vk), T1>k)

([Vk] is a Markov chain)

= :
+�

k=0

E ?, 1
0 (E ?, 1

0 (.(Vk+1) | Vk , Vk&1 ,..., V1), T1>k)

= :
+�

k=0

E ?, 1
0 (E ?, 1

0 (.(Vk+1), T1>k | Vk , Vk , Vk&1 ,..., V1))

(because [T1>k]=[Y1�0, Y1+Y2�0,..., Y1+ } } } +Yk�0]).

&(K.)= :
+�

k=0

E ?, 1
0 (.(Vk+1), T1>k)

= :
+�

k=0

E ?, 1
0 (.(Vk+1), T1=k+1)+ :

+�

k=0

E ?, 1
0 (.(Vk+1), T1>k+1)

=E ?, 1
0 (.(VT1

), T1>0)+ :
+�

k=1

E ?, 1
0 (.(Vk), T1>k)=&(.)

In the last equality we used that E ?, 1
0 (.(VT1

))=� .(%E, 1) d?(E)=
� .(E, 1) d?(E)=E ?, 1

0 (V0).

(b) An explicit formula for &: We have for a measurable non-negative
function .:

&(.)=E ?, 1
0 \ :

T1&1

k=0

.(Vk)+
=E ?, 1

0 \ :
0

j=&�

.(% jE, &1) N &
j +.(% jE, +1) N +

j +
where N &

j =*[k : 0�k<T1 and Vk=(% jE, &1)]

N +
j =*[k : 0�k<T1 and Vk=(% jE, +1)

But since T1<+� a.s., one can easily see that we have P?, 1
0 -a.s

N&
j =U j+1 , N +

j =Uj for j<0; and N &
0 =0, N +

0 =1+U0 , where

Uj=[k : 0�k<T1 , Xk= j, Xk+1= j&1]; j # Z&

Thus, by using the definition (2.1), the branching property described in (i)
of Lemma 3.3, and the fact that ? is %-invariant, we have
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&(.)=|
E

.(E, 1)(1+E E, 1
0 (U0)) d?(E)

+|
E

:
&1

j=&�

.(% jE, &1) E E, 1
0 (U j+1) d?(E)

+|
E

:
&1

j=&�

.(% jE, 1) E E, 1
0 (U j) d?(E)

=|
E

.(E, 1)(1+r0) d?(E)

+|
E

:
&1

j=&�

.(% jE, &1)(m j+1 .mj+2 } } } m&1 .r0) d?(E)

+|
E

:
&1

j=&�

.(% jE, 1)(m j .mj+1 } } } m&1 .r0) d?(E)

=|
E

.(E, 1)(1+r0) d?(E)

+ :
&1

j=&�
|

E
.(E, &1)(m1 .m2 } } } m& j&1 .r& j) d?(E)

+ :
&1

j=&�
|

E
.(E, 1)(m0 .m1 } } } m& j&1 .r& j) d?(E)

=|
E

(.(E, 1)(1+r0+m0 .r1+m0 .m1 .r2+ } } } )

+.(E, &1)(r1+m1 .r2+m1 .m2 .r3+ } } } )) d?(E)

Therefore, we can write &(dE�dy)=(1+S(E)) ?(dE) $1(dy)+
S(%E) ?(dE) $&1(dy). Let v be the constant given by v&1=
&(E_[&1, +1]). Using definition (4.4), we can write

v&1=E ?, 1
0 (T1)=|

E
(1+S(E) ?(dE)+|

E
S(%E) ?(dE)=1+2OS(E)o?

(4.5)

Since OS(E)o?<+�, we normalize & to obtain a [Vn]-invariant prob-
ability measure, which we still denote by &. The latter has the form (4.2).

The fact that ?�$i ; i=&1, 1, is absolutely continuous w.r.t. & is
obvious since S(E) is a positive function.
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(c) Ergodicity of [Vn]: That [Vn] is stationary under the probability
P&

0 comes from the fact that & is K-invariant. To have ergodicity, we prove
that bounded K-harmonic functions are constant &-almost everywhere.

Let .(E, i) be such a function. By Schwarz inequality,

.2=(K.)2�K(.2) (4.6)

Thus &(.2)=&((K.)2)�&(K(.2))=&(.2) and then &((K.)2)=&(K(.2)).
Using (4.6), we get for &-almost all (E, i) # E_[&1, +1],

(K.)2 (E, i)=K(.2)(E, i)

This shows that . is K((E, i), . )-a.s. constant. But, the probability measure
K((E, i), . ) is supported by the set [(%E, 1), (%&1E, &1)] (because
0<+(E)<1 and 0<*(E)<1). Therefore, for ?-almost every E, we have
.((%E, 1)=.(%&1E, &1). Using again the harmonicity of . we obtain

.(E, 1)=.(%E, 1)=.(%&1E, &1) for ?&almost all E # E (4.7)

Thus .( . , 1) is constant ?-a.s. since it is %-invariant. Finally (4.7) shows
that . is constant &-a.s. K

5. THE LAW OF LARGE NUMBERS. PROOF OF THEOREM 2.2

In Section 2 we obtained the a.s. limits of Xn ; herein we study those
of Xn �n. We also give corresponding results for the sequence of hitting
times [Tn]n # Z . The proof of the law of large numbers (Theorem 2.2) will
use the results of the previous section.

Remarks. Before proving Theorem 2.2, notice that

(1) The three cases in (i), (ii), (iii) of Theorem 2.2 concerning the
random environment, are mutually exclusive and cover all possible cases.

(2) In case (i) (respectively (ii)), Xn � +� a.s. (Xn � &� a.s.). But
in case (iii), each (but only one) of the following behaviors is possible:

�� limn � +� Xn=+� a.s.

�� limn � +� Xn=&� a.s.

�� &�=lim infn � +� Xn<lim supn � +� Xn=+� a.s.

To see this, note that

OSo?= O :
+�

k=0

m&k } } } m&1r0o?
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and

OFo?= O :
+�

k=0

s0 .m&1
1 } } } m&1

k o? (5.1)

Put

D={E : :
+�

n=0

m&n } } } m&1<+�= ; D$={E : :
+�

n=0

m&1
1 } } } m&1

n <+�=
D and D$ are %-invariant sets; therefore, each of them has probability 0 or 1.
Furthermore, ?(D)=1 implies ?(D$)=0 since m&k } } } m&1 and m1 } } } mk

have the same distribution.
To see (1), we use (5.1) to derive that OSo?<+� implies ?(D)=1

and ?(D$)=0, which in turn implies OFo?=+�. Similarly, OFo?

<+� implies OSo?=+�.
Now, using (4.3) and the ergodic theorem, we have

?(D)=1 if and only if O log m&1o?<0

Consequently, three cases are possible for the environment:

(a) ?(D)=1 and ?(D$)=0 in which case O log m0o?<0

(b) ?(D)=0 and ?(D$)=1 in which case O log m0o?>0

(c) ?(D)=0=?(D$) in which case O log m0o?=0

To see (2), (5.1) shows that OSo?<+� (respectively OFo?

<+�) implies (a) (resp. (b)) but if OSo?= OFo?=+� then any
one of the above situations could hold. Then Remark 2 follows by
Theorem 2.1.

Proof of Theorem 2.2. For symmetry reasons, (ii) can be deduced
from (i) by exchanging the roles of the positive and negative integers.

(i) In the light of Theorem 4.1, we will calculate the limit of Xn �n
under probability P&

0 (defined by (4.1)) where & is given by (4.1). Since
?�$i is absolutely continuous w.r.t. & we derive that P?, i

0 ; i=&1, +1 is
absolutely continuous w.r.t. P&

0 ; it follows that the calculated limit remains
valid under P?, i

0 ; i=&1, +1.
We write Xn=�n

k=1 Yk (where Yk=Xk&Xk&1) as the sum of its
increments; then using Theorem 4.1 and Birkhoff's ergodic theorem, we
have
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lim
n � +�

Xn

n
=E &

0(Y1)

=v \|E
(1+S(E)) d?(E)&|

E
S(%E) d?(E)+

=v P&
0-a.s.

The corresponding result for Tn follows very quickly by a classical
argument (see e.g. pp. 7�8 of ref. 14), which shows that

lim
n � +�

Tn

n
= lim

n � +�

n
Xn

a.s. (5.2)

Part (iii) cannot be proved in the same way as (i) (for the [Vn]-pro-
cess introduced in Section 4, no invariant probability measure is known2).
At first, we prove the result for Tn (the result for T&n follows by a reversal
argument); next, the corresponding result for Xn will follow from (5.2).

In the light of Remark 2 above, we consider two cases.
When lim sup Xn=&�, the result is obvious since in this case, a.s.

Tn=+� for sufficiently large n.
When lim sup Xn=+�, define {k=Tk&Tk&1 ; k�1. Let us consider

for A>0 the truncated r.v.'s

{A
k ={k if {k<A

=0 otherwise

Recall that when an environment E is fixed, [(Yn , Xn)] is a Markov chain.
By using the strong Markov property, one can see that the {k 's are inde-
pendent r.v.'s. On the other hand,

lim
n � +�

1
n

:
n

k=1

E E, i
0 ({A

k )= lim
n � +�

1
n \E E, i

0 ({A
1 )+ :

n&1

k=1

E %kE, 1
0 ({A

1 )+
= lim

n � +�

1
n

:
n&1

k=1

E %kE, 1
0 ({A

1 )

=E ?, 1
0 ({A

1 ) (by the ergodic theorem)

for a set of E 's, denote it E1 , such that ?(E1)=1.
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Thus, the law of large numbers for independent r.v.'s (with arbitrary
distributions) (see Theorem 3, p. 239 of ref. 4) gives for all E # E1

lim
n � +�

1
n

:
n

k=1

{A
k =E({A

1 ) PE, i
0 -a.s.; i=&1, +1

But

lim inf
n � +�

1
n

:
n

k=1

{k� lim
n � +�

1
n

:
n

k=1

{A
k =E ?, 1

0 ({A
1 )

so that by the monotone convergence theorem (when A � +�)
lim infn � +�(1�n) �n

k=1 {k�E?, 1({1). Now E ?, 1
0 ({1)=+� by (4.5); thus

lim
n � +�

Tn

n
=+� PE, i

0 -a.s.; i=&1, +1 K

6. A LIMIT LAW FOR A PRWSE

In this section we consider the case where limn � +� Xn=+�. We
study the existence of constants an and bn such that the r.v. (Xn&bn)�an

converges in distribution to a non-degenerate limit. Here, we will limit our
investigations to the situation where the environmental sequence [(*j , +j)]
is i.i.d.

In the case where (+j �*j)�a<1 a.s. (this is a special case of (i)-
Theorem 2.2, which tells us that Xn �n has a positive limit), Sza� sz and
To� th(12) found that homogeneization phenomenon holds for the PRWSE
(Central Limit Theorem with the standard normalization - n). Their
method used the fact that Tn can be represented as a sum of exponentially
mixing r.v.'s.

Herein we allow +j �*j to have wider fluctuations so that, according to
Theorem 2.2 and its following remarks, one may have Xn � +� a.s. but
(Xn �n) � 0 a.s. as well. This occurs precisely (recall that the environment is
i.i.d.) when

O log
+0

*0

o?<0 but O
+0

*0

o?�1

and corresponds to the case where T1<+� a.s. but E ?, i
0 (T1)=+�.

Such a phenomenon first has been observed by Solomon(14) for the so
called Random Walks in Random Environment (RWIRE) (the RWIRE
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model corresponds to the situation where the left- and right-transpassing
probabilities satisfy +j=1&*j a.s.), for which Kesten, Kozlov, and
Spitzer(9) found nonclassical limiting distributions. They showed that in
this case, for suitable } (0<}<1), Tn �n1�} converges to a stable distribu-
tion with index }. This is equivalent to saying that Xn �n} converges in dis-
tribution to a related non-degenerate limit, which is not gaussian.

Here, we find analogous results for PRWSE (Theorem 6.1 below also
gives the limit distribution of [Xn], even when Xn �n has a positive limit).
We introduce a related branching process in a random environment, which
serves to estimate the time Tn , at which the random walk hits the site n.
The main condition that we require on the environment is of ``fluctuation
type;'' namely, we will assume that the distribution of log(+0 �*0) is not sup-
ported by an arithmetic progression hZ (with h # R).

Throughout this section, for simplicity we will state our results under
the probability P?, 1

0 , which in the sequel will be denoted by P. Here are
some notations that will be used.

For C>0 and 0<}<2 given constants, we will denote by L}, C the
``centered'' stable distribution of index } and parameter C (see ref. 5) whose
characteristic function is as follows:

If 0<}<2, }{1: .}, C(t)=exp {&C |t|} \1&i
t

|t|
tg \?

2
}++=

If }=1: .}, C(t)=exp {&C |t| \1+i
t

|t|
2
?

log t++=
Let L� }, C be the distribution defined by:

If 0<}<1: L� }, C(]&�, u])=L}, C(]u&1�}, +�[)

If 1�}<2: L� }, C(]&�, u])=L� }, C, A(]&�, u])

=L}, C(]&uA1+1�}, +�[)

for a given constant A>0

Theorem 6.1. Let [(*j , + j); j # Z] be i.i.d. random variables satis-
fying (2.2) and such that

O log
+0

*0

o?<0 (6.1)
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there exists 0<}<+� such that

O\+0

*0+
}

o?=1,

O\+0

*0 +
}

log+ +0

*0

o?<+�, O\1&*0

*0 +
}

o?<+� (6.2)

the distribution of log(+0�*0) is non-arithmetic. (6.3)

Then the following convergences in distribution hold with A}>0,
Bi<+�, C>0 suitable constants:

(i) If 0<}<1,

Tn

n1�} � L}, C and
Xn

n} � L� }, C

(ii) If }=1,

Tn&A1nD(n�l)
n

� L1, C and
Xn&$(n)
n�log2 n

� L� 1, C

where l>0, D(n)tlog n and $(n)tn�(A1 log n)

(iii) 1<}<2,

Tn&A}n
n1�} � L}, C and

Xn&A&1
} n

n1�} � L� }, C

(iv) If }=2,

Tn&A2 n

B1 - n log n
� N(0, 1) and

Xn&A&1
2 n

A&3�2
2 B1 - n log n

� N(0, 1)

where N(0, 1) denotes the centered gaussian law with variance 1.

(v) If }>2,

Tn&B3 n

B2 - n
� N(0, 1) and

Xn&B&1
3 n

B&3�2
3 B2 - n

� N(0, 1)
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Proof. The proof is an adaptation of that in ref. 9. Similarly to
Section 3, for each site n # N, let us define for j # Z,

U n
j =*[k : 0�k<Tn and Xk= j, Xk+1= j&1]

=the number of steps performed by the PRWSE
from j to j&1 before time Tn

We can write the analogue of (3.2) for Tn :

Tn=n+2 :
n

j=&�

U n
j

Under (6.1), Theorem 2.1 shows that Xn � +� a.s. Thus (1�n1�})_
�0

j=&� U n
j � 0 a.s. and it suffices to show that the distribution of

:
n

j=0

U n
j (6.4)

converges to L}, C after a suitable normalization. To do so, we describe
below a certain aspect of the distribution of (6.4).

When an environment E is fixed, Kesten et al.(9) showed (in the special
case +j=1&*j) that for a fixed n�1, U n

n=0, U n
n&1 ,..., U n

1 have the same
law as the first n generations, Z0=0, Z1 , Z2 ,..., Zn&1 , of a branching pro-
cess with one immigrant at each generation. The immigrant arriving at
time n& j&1 corresponds to the first time the walker arrives at the site j
(coming from the origin). In the present model, the unique modification
(due to the fact that the condition +j=1&*j is relaxed) to Kesten, Kozlov,
and Spitzer's description is that the offspring distribution of each particle
present at time n& j&1 is

P(Bj=k)={1&+ j

+j* j (1&*j)
k&1

for k=0
for k�1

(6.5)

while the offspring distribution of the immigrant arriving at that time is

P(Ij=k)=*j (1&*j)
k; k�0 (6.6)

(for the definitions concerning branching processes with immigration, see
e.g. refs. 3 and 10).

When the environment is random (i.e., under probability P), since
(+n&1 , *n&1),..., (+1 , *1) have the same joint distribution as (+0 , *0),...,
(+n&2 , *n&2), (6.4) has the same distribution as

:
n&1

t=0

Zt (6.7)
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where [Zt]t�0 is a branching process in a random environment with one
immigrant per generation and offspring distributions described by:

(6.5) for the individuals present at time j;

(6.6) for the immigrant arriving at time j.

Let us use the following representation.

Zt= :
t&1

s=0

Zs, t ; t�0

where Zs, t stands for the number of progeny alive at time t of the
immigrant who arrived at time s, s<t. We derive that

E(Zs, t+1 | Zs, t=1, E)=mt , E((Zs, t+1)2 | Zs, t=1, E)=mt+2mtrt

E(Zs, s+1 | E)=rt , E((Zs, s+1)2 | E)=rs+2r2
s

From now, the proof of Theorem 6.1 will be the same as in ref. 9. For
this reason, we will only outline the main arguments. Let &0=0 and

&n=inf[t>&n&1 : Zt=0], n�1

the times at which the branching process extincts and restarts with the
immigrant arriving at those times. Let us denote by

Wn= :
&n+1&1

t=&n

Zt

the total population produced between the times &n and &n+1 . Thus, since
the environment [(*j , +j); j # Z] is i.i.d., the random pairs

(&n+1&&n , Wn); n�0

are also i.i.d.. The main argument is the following.
In the first place, we will show (see Lemma 6.2 below) that

l=E(&n+1&&n)<+�

so that (6.7) will satisfy

:
n

i=0

Ztt :
n�l

i=0

Wi
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The second member is a sum of i.i.d. random variables. The problem then
is to investigate the properties of the distribution of the Wi 's and next to
use classical limit theorems for sums of i.i.d. random variables.

In the second place, under the assumptions of the theorem, one can
show that W0 is in the domain of attraction of a stable law with index }.
More precisely, we will show that for C>0 a suitable constant,

P(W0>x)tCx&}, x � +� (6.8)

To prove (6.8), note that the randomness of W0 is due to the random-
ness of the environment on the one hand and to the fluctuations of the
reproduction of each particle given the environment on the other hand. As
in ref. 9, the tail of W0 can be approximated by the tail of

'_(E) .Z_

where

_=_A=min[t : Zt>A]; with A>0 sufficiently large,

't(E)=rt �+�
k=0 mt+1 mt+2 } } } mt+k .

Note that given _, the r.v.'s '_(E) and Z_ are independent and
'1 , '2 ,... depend only on the environment and have the same distribution
as

'0=E \ :
+�

t=1

Z0, t } E+
=the expected number of the total population,

produced by the immigrant who arrived at time 0.

Next, according to Theorem 5 of ref. 8, we have

P \\ :
+�

k=0

m1m2 } } } mk+>x+tKx&} x � +�, K>0 a suitable constant

From the independence of r0 and �+�
k=0 m1m2 } } } mk , and the fact that

O (r0)}o?<+� (last part of (6.2)), it follows that

P('0>x)tKO (r0)} o? x&} x � +� (6.9)
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Formula (6.9) plays the role of (2.9) in ref. 9. From this, some relatively
simple manipulations show that Lemmas 3, 4 and 5 in ref. 9 are still in
force. This leads to (6.8) with

C=KO (r0)}o? lim
A � +�

E((Z_A
)}, _A<&1) (6.10)

The only part that is not a line by line rewriting of Kesten, Kozlov and
Spitzer's proof is the Lemma 6.2 below (which is Lemma 2 of ref. 9).

Lemma 6.2. There exists two positive constants c1 and c2 such that

P(&1>t)<c1 e&c2t; t>0

Proof. The lemma is a special case (nonrandom immigration) of
Key's(10) Theorem 4.2. To see this, one can represent the process [Zt] as
a component of a two-type branching process in a random environment,
[(Zt , It)], with one type-I immigrant each unit of time. The individuals of
each type (type-Z and type-I) only give birth to type-Z particles. The off-
spring distribution for type-Z individuals present at time j is given by (6.5)
while the offspring distribution for type-I individuals present at time j
including the immigrant is given by (6.6) (Note that It=0, for all t). Note
that (2.2), (6.1), (6.2) imply that assumptions (i), (ii) and (iii) of Theorem
4.2 in ref. 10 are satisfied. K
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